

NEWSLETTER 24

Italian National Institute for Nuclear Physics

GIUGNO 2016

>> FOCUS

PAMELA: I RAGGI COSMICI OSSERVATI DALLO SPAZIO

Il 15 giugno 2016 ha segnato i dieci anni di attività del rivelatore satellitare PAMELA (*Payload for Antimatter Exploration and Light-nuclei Astrophysics*), l'osservatorio spaziale per lo studio dei raggi cosmici, oggi in orbita a 560 km di quota. Lanciato nel 2006 con un vettore Soyuz dalla base di Baikonur, in Kazakhstan, e inserito a bordo del satellite russo Resurs-DK1, per tutto questo tempo PAMELA ha acquisito dati, ottenendo risultati fondamentali. La missione, guidata dall'INFN e sostenuta dall'Agenzia Spaziale Italiana (ASI), è frutto di una collaborazione italo-russa cui partecipano anche Germania e Svezia.

È certamente tra i più significativi e promettenti contributi scientifici di PAMELA, la prima misura sui flussi di positroni e antiprotoni a energie elevate, che ha permesso negli anni di aprire un nuovo campo di indagine sulla materia oscura. Un grande interesse, in particolare, è stato generato dalla rivelazione di un eccesso di positroni, un risultato che è stato pubblicato dalla rivista Nature nella prima metà del 2009. Negli oltre 1400 articoli pubblicati in seguito su diverse riviste scientifiche, i fisici teorici hanno avanzato molte spiegazioni possibili per questo eccesso. In particolare, sono stati ipotizzati contributi da annichilazione di materia oscura o da pulsar, o modifiche nei modelli di propagazione dei raggi cosmici nella Galassia. Notevoli sono stati anche i risultati delle misure effettuate sui flussi di protoni e nuclei di elio, cioè la guasi totalità della radiazione cosmica, fino a un miliardo di MeV, e pubblicati su Science nel 2011. PAMELA ha mostrato per la prima volta che queste particelle hanno spettri in energia leggermente diversi fra le due specie e presentano un cambiamento di pendenza alle alte energie. Questi dati hanno gettato nuova luce sui meccanismi di produzione, accelerazione e propagazione dei raggi cosmici nella nostra Galassia. Tra i risultati che hanno destato grande interesse anche al di fuori della comunità scientifica, vi è la scoperta inaspettata di una fascia di antiprotoni intorno alla Terra. Infine, i più recenti dati dell'esperimento, pubblicati su Physical Review Letters lo scorso 13 giugno, evidenziano, per la prima volta con estrema chiarezza, gli effetti dell'attività solare

NEWSLETTER 24

Italian National Institute for Nuclear Physics

GIUGNO 2016

>> FOCUS

e della polarità del campo magnetico del Sole sui raggi cosmici, fornendo inoltre informazioni uniche sui meccanismi dell'eliosfera.

PAMELA è condotto da un team internazionale, a guida INFN e con il supporto dell'ASI, composto dalle Sezioni INFN e Dipartimenti di Fisica di Trieste, Firenze, Roma Tor Vergata, Napoli, Bari, i Laboratori Nazionali di Frascati, l'Istituto IFAC del CNR, il NRNU MEPhI e il Fian Lebedev di Mosca, l'Istituto Joffe di San Pietroburgo, l'Università di Siegen in Germania e il *Royal Technical Institute* di Stoccolma. L'Agenzia Spaziale Russa ha inoltre costruito il satellite Resurs-DK1 e il vettore Soyuz. Le singole parti dello strumento sono state realizzate nei diversi laboratori con il contributo di numerose aziende, soprattutto italiane. L'integrazione dello strumento prima del lancio è avvenuta presso i laboratori della sezione INFN e del Dipartimento di Fisica di Roma Tor Vergata.