

Istituto Nazionale di Fisica Nucleare

JUNE 2019

» INTERVIEW

ITALIAN EXCELLENCE FOR GLOBAL RESEARCH

Interview with Caterina Biscari, INFN Researcher and General Manager of the ALBA Synchrotron Laboratory in Barcelona since 2012.

In 2012, at the head of the largest and most innovative scientific infrastructure on the Iberian peninsula, was appointed an excellent Italian physicist. Technology Director of the INFN Frascati National Laboratories, a graduate in physics from the Complutense University of Madrid, Caterina Biscari was born in Italy, in Modica and returned to Italy after her studies to start her scientific career. The laboratory she has been managing for 7 years is the ALBA Synchrotron, to be found in the scientific park of Cerdanyola del Vallès, 15 kilometres away from Barcelona: a laboratory with a strong international vocation, dedicated to basic research and its application in fields ranging from technological innovation to medicine. An internationally recognised expert in particle accelerators for scientific research and medical applications, Caterina Biscari has also worked at CERN in Geneva and at the CNAO in Pavia, the National Centre for Oncological Hadrotherapy, whose accelerator was implemented with the fundamental contribution of INFN and its researchers, before moving on to manage the ALBA Synchrotron. She is a Fellow of the European Physical Society, member of several committees including the Scientific Policy Committee of CERN, the Scientific Advisory Committee of KEK and the PSI Advisory Board. In 2013 she was awarded the official honour of the Order of the Star by the President of the Italian Republic for her role in developing collaborations between Italy and other countries. We asked her to tell us how things are going and how she sees the future of her laboratory.

First of all, I would like to know how it came about: from research in Italy to managing the most prestigious scientific laboratory in Spain. It doesn't seem like a career step for everyone.

As in all steps in life there is always a combination of personal initiative and opportunity that arrive at the right time. During my scientific career, I have always maintained an interest in projects that were proposed in Spain based on particle accelerators. In 2012, at ALBA, they opened the position of facility manager with an international competition, in which I successfully participated. So I was appointed

Istituto Nazionale di Fisica Nucleare

JUNE 2019

» INTERVIEW

"directora", of which I immediately appreciated the use of the feminine version of the word. I would like to thank Spain, ALBA and its Council for offering me the opportunity to manage a fantastic group of people and to reap the benefits of the previous work of building and fine-tuning all the systems. My first visit to ALBA, immediately after the appointment, coincided with the day when the first official user began collecting data on a synchrotron beamline, thus starting the period of use of the beamlines. My initial task was therefore to organise and consolidate the operation, both from the point of view of the functioning of the technological systems as well as of user services, to then turn to the development and growth of the infrastructure and its scientific lines. Now we are in the process of defining in which technologies we want to invest in the near future with the construction of new beamlines, based on our capabilities, on those of the national and international user community and, above all, on the needs and challenges of the society of the future.

CERN teaches that research in physics with particle accelerators, but also with other tools, is increasingly global and shared: made of large collaborations and based on the exchange of knowledge, methods and technological innovations. What is the scientific community of ALBA like and how does it liaise with the rest of the world?

ALBA is a research infrastructure and a user facility, financed by the Spanish government and the regional government of Catalonia in equal measure. Despite being a national project, it has a clear international vocation. 25% of the personnel, currently consisting of 220 people, comes from outside Spain and, in this percentage, the most represented foreign community is that of Italy. Furthermore, the ALBA beamlines are used by an ever-increasing number of researchers, which last year reached 2200, with 35-40% coming from foreign institutions. Since 2012 to date, we have welcomed researchers from 35 different countries in our laboratories. And, finally, an essential part of our activity is the development of research and technology programs in collaboration with other institutions and research centres. In this context, our collaborations are dominated by the programs undertaken with similar infrastructures, especially European ones, through joint projects presented to the European community, or collaborative projects on a specific scientific line.

We are among the main actors of LEAPS (League European of Accelerator-based Photon Sources), which includes about twenty European synchrotrons and FELs (Free Electron Lasers). The network was created with the strategic mission of unifying the means and specialisations of each individual structure, so as to optimise scientific and technical capacities in each country and offer European users complete and compatible tools and services. Next year I will have the honour of being Chair of LEAPS and, therefore, the voice of a European community that includes approx. 40,000 researchers engaged in responding to the

Istituto Nazionale di Fisica Nucleare

JUNE 2019

» INTERVIEW

challenges of our society on topics like health, energy, nutrition, new materials, big data and much more. And finally I would like to mention our collaboration with CERN, dedicated in particular to the development of future accelerators, from the FCC, CLIC and CompactX, and of course with INFN.

Which of the leading sectors of the laboratory do you think are the most promising? Have you established a hierarchy in ALBA between basic research and applied research?

A synchrotron light source is more dedicated to applied research, although very often the dividing line between the two types of research is blurred. The hierarchy among the hundreds of experiment proposals that researchers submit to our call for proposals is based on their scientific excellence, which is evaluated by external committees of international experts and allows the selection of experiments that will be carried out: on average, about half of those proposed.

As an example of interaction between applied and basic research, I can mention the field of nanomagnetism, which develops in three of our beamlines, complementing different light-matter interaction techniques. Materials are studied for computing, spintronics, high critical temperature superconductor applications and many others for different uses. But, to return to the question concerning the relationship between basic and applied physics, when studying images of the magnetic properties of surfaces, or of magnetic moments in very thin layers of material, of a few tens of nanometres, or of skyrmions (particular states of sub-nuclear matter), these respond to questions of fundamental physics, increasing the theoretical knowledge in the field of magnetic materials.

Another field in which the current tools of ALBA excel is the development of new drugs, thanks to a line based on a transmission microscope, where 3D images of cells are obtained with a resolution of a few tens of nanometres and that complement the diffraction line of macromolecules where protein structures at atomic resolution are resolved. This is one of the three or four lines of this type in the world, available to the global research community.

I would also like to mention the applications in the field of chemical catalysis, essential for the development of technologies with low environmental impact, a research field for the development of which we also make recourse to the collaboration of Spanish research institutes among the most recognised in the world. And, finally, developments in the energy materials sector, for the construction of solar cells or batteries.

Ultimately, the over 1,500 experiments that took place during these first years of operation in ALBA are extremely diversified, with researchers from thousands of research institutes and universities.

Istituto Nazionale di Fisica Nucleare

JUNE 2019

» INTERVIEW

The ALBA laboratory is engaged in numerous activities concerning the dissemination of scientific culture. What role do you attribute to teaching in general and to early scientific training, more specifically?

I think that we scientists have a significant responsibility in disseminating the value of science. We are called upon to participate in the training of the various players in society. Our message must reach politicians, the media, the public that approaches us through the activities we regularly organise, but above all we must try to reach those who do not have the curiosity to know what lies behind the door of a research laboratory. Convince them that without research, without a commitment of the country to research, there is no future.

I would like to make the example of a project conceived by the communication department of our laboratory, the "ALBA Mission" project: a project developed via web and aimed at children between 9 and 11 years of age of schools distributed throughout Spain. We organised four simple experiments that the teachers can easily carry out in their classrooms, guided by our researchers and with the possibility of connecting directly to us. In this way we reached 250 teachers and more than 7,000 children who now know — because they worked with us and saw our videos — that synchrotrons exist and that they are useful for the development of new drugs, or new materials to build batteries or to restore our archaeological treasures. We set up a visit to the winning school as a prize: three of our young researchers went to a school in Guadalupe, a small village of 2000 inhabitants in Extremadura, where they were welcomed as heroes. Next year, in the second edition, we will expand the project to involve up to 20,000 students.

On the other hand, I think that children and young people should have a complete education, including basic science, but not forgetting humanistic education, history and philosophy. This knowledge is necessary to train any individual and provide them with critical skills, so that they can recognise, among other things, how technology can contribute to the development of humanity, but always with the focus on human beings.

In all areas of work, great attention is now being dedicated to the issue of gender equality. Has being a woman influenced, for better or for worse, your career? How do you encourage your younger female researchers to break down the prejudices and acquired insecurities?

Being a woman is unlikely to positively influence a career path in a highly male-dominated environment. In some countries active policies in this regard have been developed in addition to the attention to the issue of gender equality. Spain is certainly ahead of Italy in not discriminating on the basis of gender, as I have been able to personally experience, even though there is still a long way to go. In any case, during

Istituto Nazionale di Fisica Nucleare

JUNE 2019

» INTERVIEW

my career I have not experienced significant obstacles due to being a woman. The obstacles can be overcome with tenacity and work, without reflecting too much on the fact that they can be due to being a woman, and with the knowledge that they are sometimes inevitable given the circumstances. And once the glass ceiling has been broken, you get a recognition, sometimes even too much, just because you're a woman. We are so few that we are treated as if we were special, although there are sometimes chauvinist episodes which it is easier to smile about when you have already reached a mature age or a recognised position. My advice to young female researchers is not to be afraid, to work hard to make their dreams come true and to tactfully point out the error in certain attitudes. I hope that my position, which enjoys a certain visibility, serves as an example for girls, for children.

The role model still prevalent for women often leads girls to choose service activities, those that are of help to others. It is normal to want to be a teacher, a doctor, to take care of someone. My message is that being a scientist, an engineer or an IT expert is a perfect way of really helping society. Moreover, these are also wonderful jobs, which also allow you to have fun and find personal gratification: it is therefore our right and duty to access them.